

Canadian Nuclear Safety Commission (CNSC): Small Modular Reactor Licensing in Canada

Converging Energy Technologies (CET) Conference September 20, 2024

Beth Vary Director, Advanced Reactor Assessment Division

Commission canadienne de sûreté nucléaire

e-Doc 7363991

Our Mandate

- Regulate the use of nuclear energy and materials to protect health, safety, security and the environment
- Implement Canada's international commitments on the peaceful use of nuclear energy
- Disseminate **objective** scientific, technical and regulatory **information** to the public

OVER 70 YEARS OF REGULATORY EXPERIENCE

Our Approach to Licensing Small Modular Reactors (SMRs)

Robust Licensing Process

Leveraging CNSC's robust performance-based, riskinformed regulatory framework sets us up for success when licensing novel technologies.

Vendor Design Review

Maintaining awareness of upcoming regulatory challenges through prelicensing processes (i.e. early discussions with proponents).

SMR Readiness Project

Addressing identified regulatory challenges through a dedicated and integrated readiness project.

Licensing Process Overview

CNSC Licensing Approach

- Small Modular Reactors are licenced according to Class I Nuclear Facilities Regulations
- Licensing process requires a licence application that includes sufficient information to demonstrate a reactor can be safely constructed, operated and decommissioned
- CNSC staff provide recommendations on licensing to the Commission, who is the decision maker through a public hearing process
- CNSC follows a **performance-based approach** to licensing nuclear facilities.

Pre-licensing Engagement and Licensing Process Overview

Vendor Design Review (VDR)

Vendor Design Review (VDR)

- Vendors are encouraged to engage with the CNSC early
- A VDR is an optional process that:
 - provides feedback on vendor's efforts to address Canadian requirements and to identify fundamental barriers to licensing (if any), early in the process
 - provides an opportunity for CNSC staff to become familiar with the design and identify regulatory issues along with resolutions
- A VDR does not constitute an approval of a design
- Three phases
 - **Phase 1** determines if the vendor understands and intends to meet CNSC design requirements
 - Phase 2 focuses on identifying potential fundamental barriers to licensing
 - Phase 3 (if required) involves follow up on one or more focus areas chosen by the vendor

VDR Focus Areas – Design and Safety Analysis Centric

1	General plant description, defence in depth, safety goals and objectives, dose acceptance criteria	11	Pressure boundary design
2	Classification of structures systems, and components	12	Fire Protection
3	Reactor core nuclear design	13	Radiation Protection
4	Fuel design and qualification	14	Out-of-Core Criticality
5	Control system and facilities	15	Robustness, safeguards and security
6	Means of reactor shutdown	16	Vendor research and development program
7	Emergency core cooling and emergency heat removal systems	17	Management system of design process and quality assurance in design and safety analysis
8	Containment /confinement and safety-important civil structures	18	Human factors
9	Mitigation of Design Extension Conditions	19	Incorporation of decommissioning in design considerations
10	Safety analysis (PSA, DSA, hazards)		

Canadian Nuclear Landscape

CANADIAN NUCLEAR LANDSCAPE

LICENSING ACTIVITIES FOR NEW BUILDS IN CANADA NEW BRUNSWICK POWER Site preparation application for 1 ARC-100 SMR

ONTARIO POWER GENERATION Construction application for 1 GEH BWRX-300

Bruce Power Planning Phase of Impact Assessment for up to 4,800 Mwe (large nuclear)

CANADIAN NUCLEAR LANDSCAPE

POTENTIAL FUTURE NEW BUILD APPLICATIONS ONTARIO POWER GENERATION (OPG) Up to 3 additional BWRX-300 UNITS

> **SASKPOWER** BWRX-300

SASKACHEWAN RESEACH COUNCIL NUCLEAR eVinci[™] Microreactor

OPG and CAPITAL POWER Exploring SMRs in Alberta

Looking Ahead

The CNSC is prepared for nuclear innovation and expansion in Canada without compromising the safety and security of the environment and the public by:

- Leveraging the existing robust licensing processes
- Having early conversations with vendors through the Vendor Design Review Process
- Ensuring readiness for regulating advanced reactor technologies.

